Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Total Environ ; 862: 160767, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2150571

ABSTRACT

The COVID-19 epidemic has exerted significant impacts on human health, social and economic activities, air quality and atmospheric chemistry, and potentially on climate change. In this study, an online coupled regional climate-chemistry-aerosol model (RIEMS-Chem) was applied to explore the direct, indirect, and feedback effects of anthropogenic aerosols on radiation, boundary layer meteorology, and fine particulate matter during the COVID-19 lockdown period from 23 January to 8 April 2020 over China. Model performance was validated against a variety of observations for meteorological variables, PM2.5 and its chemical components, aerosol optical properties, as well as shortwave radiation flux, which demonstrated that RIEMS-Chem was able to reproduce the spatial distribution and temporal variation of the above variables reasonably well. During the study period, direct radiative effect (DRE) of anthropogenic aerosols was stronger than indirect radiative effect (IRE) in most regions north of the Yangtze River, whereas IRE dominated over DRE in the Yangtze River regions and South China. In North China, DRE induced larger changes in meteorology and PM2.5 than those induced by IRE, whereas in South China, the changes by IRE were remarkably larger than those by DRE. Emission reduction alone during the COVID-19 lockdown reduced PM2.5 concentration by approximately 32 % on average over East China. As a result, DRE at the surface was weakened by 15 %, whereas IRE changed little over East China, leading to a decrease in total radiative effect (TRE) by approximately 7 % in terms of domain average. The DRE-induced changes in meteorology and PM2.5 were weakened due to emission reduction, whereas the IRE-induced changes were almost the same between the cases with and without emission reductions. By aerosol radiative and feedback effects, the COVID-19 emission reductions resulted in 0.06 °C and 0.04 °C surface warming, 1.6 and 4.0 µg m-3 PM2.5 decrease, 0.4 and 1.3 mm precipitation increase during the lockdown period in 2020 in terms of domain average over North China and South China, respectively, whereas the lockdown caused negligible changes on average over East Asia.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Meteorology , Feedback , Environmental Monitoring/methods , Communicable Disease Control , Respiratory Aerosols and Droplets , Air Pollution/analysis , China/epidemiology
2.
Advances in Climate Change Research ; 2022.
Article in English | ScienceDirect | ID: covidwho-2094966

ABSTRACT

In order to know how surface air temperature (SAT) changes in East Asia under different emission scenarios after the COVID-19 outbreak, in this paper, we investigated the impacts of greenhouse gases (GHGs) and anthropogenic aerosols changes on SAT in East Asia by using the aerosol-climate coupled model BCC-AGCM 2.0_CUACE/Aero, combining with the post-pandemic emission scenarios proposed by Covid multi-Earth system model intercomparison project (CovidMIP scenarios for short, including fossil-fueled recovery, moderate green stimulus, strong green stimulus, hereinafter as FFF, MGG, SGG, respectively). We assessed the impacts of changes in GHGs and anthropogenic aerosols together and separately on SAT in East Asia and its typical subregions during 2020‒2050. The results show that by mid-21st-century, SAT in East Asia will increase by 0.81±0.083°C under Baseline (same as SSP2-4.5 scenario), i.e., SAT difference between 2045‒2050 and 2020‒2025), and there will be more intense warming in all the three scenarios in East Asia, in which the largest SAT difference (SAT-d) compared to Baseline is 0.33±0.11°C under SGG and the smallest SAT-d is 0.07±0.14°C under FFF. To further explore the mechanism of these SAT-d, we analyzed the trend of surface longwave and shortwave net radiation flux driven by GHGs and anthropogenic aerosols there. It is found that in early period (2020‒2035), the role of aerosol changes is bigger than that of GHG changes in dominating SAT-d, particularly sulfate, whose reduction will become the main contributor to SAT-d by affecting the net solar flux at surface. In later period (2036‒2050), because of GHGs’ longer atmospheric lifetime than aerosols, the role of decreasing GHGs concentrations will determine the drop in SAT-d through affecting the net longwave flux at surface.

3.
Clim Dyn ; 59(9-10): 2965-2978, 2022.
Article in English | MEDLINE | ID: covidwho-2048235

ABSTRACT

Anthropogenic emissions decreased dramatically during the COVID-19 pandemic, but its possible effect on monsoon is unclear. Based on coupled models participating in the COVID Model Intercomparison Project (COVID-MIP), we show modeling evidence that the East Asian summer monsoon (EASM) is enhanced by 2.2% in terms of precipitation and by 5.4% in terms of the southerly wind at lower troposphere, and the amplitude of the forced response reaches about 1/3 of the standard deviation for interannual variability. The enhanced EASM during COVID-19 pandemic is a fast response to reduced aerosols, which is confirmed by the simulated response to the removal of all anthropogenic aerosols. The observational evidence, i.e., the anomalously strong EASM observed in 2020 and 2021, also supports the simulated enhancement of EASM. The essential mechanism for the enhanced EASM in response to COVID-19 is the enhanced zonal thermal contrast between Asian continent and the western North Pacific in the troposphere, due to the reduced aerosol concentration over Asian continent and the associated latent heating feedback. As the enhancement of EASM is a fast response to the reduction in aerosols, the effect of COVID-19 on EASM dampens soon after the rebound of emissions based on the models participating in COVID-MIP. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-022-06247-8.

4.
Atmos Pollut Res ; 13(6): 101424, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1803525

ABSTRACT

A regional air quality model system (RAQMS) driven by the Weather Research and Forecasting model (WRF) is applied to investigate the distribution and evolution of mineral dust and anthropogenic aerosols over China in April 2020, when air quality was improved due to reduced human activity during the COVID-19 epidemic, whereas dust storms began to attack China and deteriorated air quality. A dust deflation model was developed and improved mineral dust prediction. Model validation demonstrated that RAQMS was able to reproduce PM10, PM2.5 and aerosol components reasonably well. China suffered from three dust events in April 2020, with the maximum hourly PM10 concentrations exceeding 700 µg m-3 in downwind cities over the North China Plain (NCP). Mineral dust dominated PM10 mass (>80%) over the Gobi deserts in north and west China, while it comprised approximately 30-50% of PM10 over wide areas of east China. The domain and monthly mean dust mass fractions in PM10 were estimated to be 47% and 43% over the North China Plain and east China, respectively. On average, mineral dust contributed up to 22% and 21% of PM2.5 mass over the North China Plain and east China in April 2020, respectively. Sulfate and nitrate produced by heterogeneous chemical reactions on dust surface accounted for approximately 9% and 13% of secondary inorganic aerosols (SIA) concentration over the North China Plain and east China, respectively. The results from this study demonstrated that mineral dust made an important contribution to particulate matter mass during the COVID-19 epidemic in spring 2020 over China.

5.
Atmos Res ; 264: 105866, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1432964

ABSTRACT

The pandemic in 2020 caused an abrupt change in the emission of anthropogenic aerosols and their precursors. We estimate the associated change in the aerosol radiative forcing at the top of the atmosphere and the surface. To that end, we perform new simulations with the CMIP6 global climate model EC-Earth3. The simulations use the here newly created data for the anthropogenic aerosol optical properties and an associated effect on clouds from the simple plumes parameterization (MACv2-SP), based on revised SO2 and NH3 emission scenarios. Our results highlight the small impact of the pandemic on the global aerosol radiative forcing in 2020 compared to the CMIP6 scenario SSP2-4.5 of the order of +0.04 Wm-2, which is small compared to the natural year-to-year variability in the radiation budget. Natural variability also limits the ability to detect a meaningful regional difference in the anthropogenic aerosol radiative effects. We identify the best chances to find a significant change in radiation at the surface during cloud-free conditions for regions that were strongly polluted in the past years. The post-pandemic recovery scenarios indicate a spread in the aerosol forcing of -0.68 to -0.38 Wm-2 for 2050 relative to the pre-industrial, which translates to a difference of +0.05 to -0.25 Wm-2 compared to the 2050 baseline from SSP2-4.5. This spread falls within the present-day uncertainty in aerosol radiative forcing and the CMIP6 spread in aerosol forcing at the end of the 21st century. We release the new MACv2-SP data for studies on the climate response to the pandemic and the recovery scenarios. Our 2050 forcing estimates suggest that sustained aerosol emission reductions during the post-pandemic recovery cause a stronger climate response than in 2020, i.e., there is a delayed influence of the pandemic on climate.

SELECTION OF CITATIONS
SEARCH DETAIL